Les transformations canoniques

Les transformations sont générées par F'(q;, pi; Q;, P;;t) = fonction génératrice

On considere traditionnellement quatre classes de transformations
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Les transformations canoniques

Pour veérifier qu’une transformation est canonique : (), (q7 D, t) P (Q, D, t)

1) intégrer explicitement la transformation, i.e. trouver la fonction génératrice
Si F existe <-> la transformation est canonique par construction

2) verifier que sa matrice Jacobienne est symplectique
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3) Verifier que le crochet de Poisson satisfait :
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4) verifier que les équations du mouvement ont la forme canonique
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|’équation d’Hamilton-Jacobi

Est-il possible de trouver une fonction génératrice F telle que le nouvel Hamiltonien
OF
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K = H A

Soit nul, K=0 ?

Si oui, les nouvelles coordonnées Q; et P; sont des intégrales du mouvement
et la dynamique est déterminée par la transformation inverse.
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On travaille avec F2(q;,P;;t)
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|’équation d’Hamilton-Jacobi

L’équation aux dérivées partielles

H(ql,. 8f,...,8f ) 8{ 0

est I’équation d’Hamilton-Jacobi pour f(q1, ..., qn, 1)

n+1 dérivées partielles -> n+1 constantes d’intégration dans la solution
f apparait uniqguement en dérivées et donc f+const. est une solution.

La solution générale, si elle existe, s’écrit
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On résout le probleme initial en considérant la fonction génératrice
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Note: la fonction S est une action.
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